

 Navigation

 	
 index

 	Ohess

Publications

	Jun 07, 2014 - ØMQ Sockets and Perl

	Nov 15, 2013 - Responsive Email Content

	Apr 10, 2013 - Plack, AnyEvent, Redis, and SockJS

	Feb 01, 2013 - Salt - Reinstall Package from RPM

	Oct 12, 2012 - Deploying Perl with Fabric and Carton

	Jun 01, 2012 - On the State of High Availability

	Apr 15, 2012 - Using pkgsrc on Debian Squeeze

	Apr 15, 2012 - Using pkgsrc on Centos 5.5

 Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Ohess

Index

 Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

 _static/minus.png

_static/ajax-loader.gif

pub/read-the-docs-inc.html

 Navigation

 		
 index

 		Ohess »

Placeholder

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/using-pkgsrc-on-centos-55.html

 Navigation

 		
 index

 		Ohess »

 Directions for setting up pkgsrc on Centos 5.5

Using pkgsrc on Centos 5.5

Beginning with pkgsrc on Centos is rather simple. Before checking out pkgsrc,
a base install of Centos is missing several requirements:

yum install gcc gcc-c++ kernel-devel cvs

Once these requirements are met, you can checkout and bootstrap pkgsrc:

cd /usr
CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -rpkgsrc-2011Q1 pkgsrc

Of course, the pkgsrc release might need to be changed, this example is using
the current release as of now. I needed the CVS_RSH for this to work, as
note the example is assuming your current shell is bash.

After cvs finishes up, you should have /usr/pkgsrc – time to bootstrap:

cd /usr/pkgsrc/bootstrap
./bootstrap

This will build the base package management utilities, bmake, et al.

The last step before you get going is making sure /usr/pkg is higher
priority in your PATH env variable. This would be done in your bash/csh/etc
profile script normally. Setting it on the command line is fine for now (again,
depending on your shell, I’m using the base install of bash here):

export PATH=/usr/pkg/bin:/usr/pkg/sbin:$PATH

Building a Package

For this step, I’ll build mail/postfix:

cd /usr/pkgsrc/mail/postfix
bmake

You’ll likely hit a snag:

> ERROR: No usable termcap library found on the system.

This is resolved by install ncurses development files:

yum install ncurses-devel

Restart the build and things should compile cleanly, you can install the package
normally.

Using rc.subr and init

Using pkgsrc on sysv-rc based servers is a little easier, as sysv-rc follows the
same dependency type model that pkgsrc’s rc.subr does. This allows you to use
pkgsrc scripts by simply copying the init script to /etc/rc.d and making some
small changes to the init script header.

Centos does not use sysv-rc however, and so a little more hand holding is
required. To tie pkgsrc init scripts in with Centos’ init, you’ll need to edit
the scripts and decide boot priority yourself.

First, install rc.subr, this will still be used by pkgsrc init scripts:

cd /usr/pkgsrc/pkgtools/rc.subr
bmake
bmake install

There was one change I needed to make on my Debian servers:

--- /etc/rc.subr~ 2011-04-23 06:02:34.000000000 +0000
+++ /etc/rc.subr 2011-04-23 06:03:01.000000000 +0000
@@ -56,7 +56,7 @@
 _RCCMD_rcs="/usr/bin/rcs"
 _RCCMD_rm="/bin/rm"
 _RCCMD_sh="/bin/sh"
-_RCCMD_su="/usr/bin/su"
+_RCCMD_su="/bin/su"
 _RCCMD_systrace="/bin/systrace"
 _RCCMD_whoami="/usr/bin/whoami"

Using postfix as the example still, install the init script from pkgsrc:

cd /etc/init.d
cp /usr/pkg/share/examples/rc/postfix .

The init script will require changes here, and the normal changes to
/etc/rc.conf are required as well.

That is, very briefly, how to maintain the init scripts installed by pkgsrc
packages. There is a lot more to configuring the scripts however, I will try
to expand with a later article.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag.html

 Navigation

 		
 index

 		Ohess »

 Publications

 ØMQ

 ØMQ Sockets and Perl

Using ZeroMQ sockets in your Perl application.

 websockets

 Plack, AnyEvent, Redis, and SockJS

Background information on websockets and an example walkthrough building an
evented web application with websockets

 salt

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 rpm

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 responsive

 Responsive Email Content

How to add responsive email content into your responsive email design.

 redhat

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 pkgsrc

 Using pkgsrc on Debian Squeeze

Directions for setting up pkgsrc on Debian Squeeze

 Using pkgsrc on Centos 5.5

Directions for setting up pkgsrc on Centos 5.5

 perl

 ØMQ Sockets and Perl

Using ZeroMQ sockets in your Perl application.

 Plack, AnyEvent, Redis, and SockJS

Background information on websockets and an example walkthrough building an
evented web application with websockets

 Deploying Perl with Fabric and Carton

An example of deploying Perl applications with Fabric and Carton, with slides from a panel talk at pdx-pm.

 linux

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 Using pkgsrc on Debian Squeeze

Directions for setting up pkgsrc on Debian Squeeze

 Using pkgsrc on Centos 5.5

Directions for setting up pkgsrc on Centos 5.5

 HA

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 freebsd

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 email

 Responsive Email Content

How to add responsive email content into your responsive email design.

 design

 Responsive Email Content

How to add responsive email content into your responsive email design.

 centos

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 anyevent

 Plack, AnyEvent, Redis, and SockJS

Background information on websockets and an example walkthrough building an
evented web application with websockets

 admin

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 Deploying Perl with Fabric and Carton

An example of deploying Perl applications with Fabric and Carton, with slides from a panel talk at pdx-pm.

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 Using pkgsrc on Debian Squeeze

Directions for setting up pkgsrc on Debian Squeeze

 Using pkgsrc on Centos 5.5

Directions for setting up pkgsrc on Centos 5.5

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/2013.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/responsive-email-content.html

 Navigation

 		
 index

 		Ohess »

 How to add responsive email content into your responsive email design.

Responsive Email Content

So, I found myself wearing a hat that I’ve haven’t had to wear in a long time.
I was working on an email design project to produce a responsive template –
responsive in both the layout and in displaying links on desktop and mobile
devices.

I needed to find a solution that allowed us to display different links between
the mobile and desktop view in our mailings. Without the ability to use
Javascript, the only solution to displaying content in a responsive manner is to
duplicate the content and use CSS media queries [https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries] to toggle
which block of content is displayed. In our case, the content was tracking
links, but this applies to any inline element.

One method for implementing responsive content would have been to use two
wrapping parent blocks for every piece of content that needed to differ. For
most use cases this should suffice, but for our use case, this would have been
any piece of content with a link – that is, the entire mailing.

Responsive Content

Attempting to avoid needless duplication of content, the solution I came to is
to create two inline elements – using only the differing content – and
toggling display between the elements using rules in a media query. The
hardest part about executing this is client support.

This solution does have several deficiencies, due to browser inconsistencies.
Gmail and Outlook.com force inline CSS styling and don’t respect media queries,
which is required to toggle the links. Therefore, these clients will always
target desktop – at least this example does, the styles could be written to
target mobile by default instead too.

The initial, naive thought was that this should work:

Unfortunately, this is the beginning of the rabbit hole – this isn’t going to
work. Major clients work, but Gmail and Outlook show both blocks, because they
don’t respect embedded CSS. These rules will need to be replicated inline.

Gmail Android is particularly horrible, because it doesn’t respect rules to hide
inline elements. Because it drops inline styling, the link wrappers need to be
converted to block elements.

The elements also need more obscure styling to help hide the block, because
Gmail drops many inline styling attributes, including display: none.
Similarly, the media query needs high precedence rules to negate all these
styles.

At this point, all major clients are showing only one set of blocks, but because
we converted the inline elements into block elements, some clients are
displaying broken lines.

Fixing these issues is what makes things really ugly. The block elements can’t
simply set display: inline or Gmail will drop formatting on them again,
showing them. Instead, display: inline-block can be used, but this will
cause Outlook.com to show the blocks.

Knowing that all other desktop clients will at least hide the block, Gmail can
be targeted with display: inline-block and some extra formatting and Outlook
can be targeted with conditional comment blocks:

<<!-- -->!--[if !mso]><<!-- -->!-- -- -->Mobile content<<!-- -->!--<![endif]-->

Outlook.com doesn’t like version comparisons in the conditional expression, and
the middle, seemingly superfluous comment block is required, as Outlook.com
doesn’t work with Microsoft’s own standard conditional comment directives and
will display a blank page – of course.

Two more loose ends that this doesn’t reach is the IE6-backed rendering of
Outlook 2000 and 2003. These clients still treat the inline-block as a block, so
this requires a true hack to fix the spacing issue. This hack, placed after the
display: inline-block inline rule, will only run on IE6:

*display: inline !important;

Lastly, Yahoo finally speaks up and displays its own CSS inconsistencies:
it displays whatever the hell it wants to [http://www.campaignmonitor.com/blog/post/3457/media-query-issues-in-yahoo-mail-mobile-email/]. To address this, all
rules inside media queries now also need to use attribute selectors, instead of
class selectors. Yahoo doesn’t support attribute selectors, and will disregard
these rules entirely.

At this point, the only issues are spacing issues, which can be resolved for the
most part by reducing links to a single line, without unneeded spacing.

Solution

Below is a close-up of the link replacement code, expanded out for display
only:

 Desktop

<!--[if !mso]><!-- -- -->
<div class="mobile-link" style="
 display: inline-block !important;
 *display: inline !important;
 max-height: 0px;
 width: 0px;
 overflow: hidden;
 font-size: 0px;">
 Mobile
</div>
<!--<![endif]-->

Through this project, I learned a great deal. Besides learning how to apply
these obscure rules to email styling, I also learned that Gmail is the worst
– more difficult to deal with than even Microsoft’s Outlook line. I can’t say I
learned that Microsoft is awfully inconsistent, but that notion was at least
lamented. Inconsistencies between rendering engines used in Outlook vary wildly,
Outlook.com and Outlook don’t support the same conditionals, and I’m not even
sure Windows Mobile knew what it was doing.

The only thing that made this experience tolerable were the resources available
for testing. Trying to design all of this without Litmus [http://litmus.com], or another email
testing service, would have been an awful, awful experience. Another invaluable
tool was Campaign Monitor’s CSS support [http://www.campaignmonitor.com/css/] documents and their blog posts
directed at email design issues. These offered a lot of clues and direction
towards troubleshooting issues I was noticing.

The layout rework was rather simple, there were several hangups that I hit, but
both Email on Acid [http://emailonacid.com] and Campaign Monitor [http://www.campaignmonitor.com/css/] were a great resource for all the
problems I encountered.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/2014.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/2012.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/author.html

 Navigation

 		
 index

 		Ohess »

 Publications

 Anthony

 ØMQ Sockets and Perl

Using ZeroMQ sockets in your Perl application.

 Responsive Email Content

How to add responsive email content into your responsive email design.

 Plack, AnyEvent, Redis, and SockJS

Background information on websockets and an example walkthrough building an
evented web application with websockets

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 Deploying Perl with Fabric and Carton

An example of deploying Perl applications with Fabric and Carton, with slides from a panel talk at pdx-pm.

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 Using pkgsrc on Debian Squeeze

Directions for setting up pkgsrc on Debian Squeeze

 Using pkgsrc on Centos 5.5

Directions for setting up pkgsrc on Centos 5.5

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/using-pkgsrc-on-debian-squeeze.html

 Navigation

 		
 index

 		Ohess »

 Directions for setting up pkgsrc on Debian Squeeze

Using pkgsrc on Debian Squeeze

After hitting some issues with glibc while setting up pkgsrc on Centos, I
revisited setting up a Debian squeeze server with pkgsrc. Here are some notes on
setting pkgsrc up to build.

First, get build requirements for bootstrapping:

apt-get install cvs build-essential

Next, checkout and bootstrap pkgsrc:

cd /usr
cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -rpkgsrc-2011Q1 pkgsrc

Make sure to pay attention to the current pkgsrc release.

You should have /usr/pkgsrc now, start by bootstraping:

cd /usr/pkgsrc/bootstrap
export SH=/bin/bash
./bootstrap

The second command is a work around for the following, otherwise tripped,
error:

a:/usr/pkgsrc/bootstrap# ./bootstrap
ERROR: Your shell's echo command is not BSD-compatible.
ERROR: Please select another shell by setting the environment
ERROR: variable SH.

As with any pkgsrc install, make sure /usr/pkg/{bin,sbin} is in your PATH
env variable (assuming your shell is bash):

export PATH=/usr/pkg/bin:/usr/pkg/sbin:$PATH

Building a Package

Much like the last attempt at using pkgsrc on Centos, you will need the
ncurses development headers:

apt-get install libncurses5-dev

Without going into much detail, because my boxes are virtualized on Xen with
Rackspace’s cloud, I can assume they will be running the same kernel version.
Using a cluster of Debian servers with the same release, on the same
kernel allows me to use one server as a pkgsrc build server, pulling in
binary packages from the other servers.

So, here, you would build from pkgsrc, I’ll just install from a binary package
now that we’re bootstrapped.

Setting up rc.subr

Also, as mentioned, sysv-rc is far more compatible with pkgsrc init scripts
and although some manual work is required, init scripts are easily maintained.

First, install rc.subr, this will still be used by pkgsrc init scripts:

cd /usr/pkgsrc/pkgtools/rc.subr
bmake
bmake install

Not a requirement, but I like to move the rc.d directory location to
/usr/pkg/etc/rc.d to differentiate between the system init.d and pkgsrc rc.d
paths. I add the following to /usr/pkg/etc/mk.conf:

RCD_SCRIPTS_DIR = /usr/pkg/etc/rc.d

Once built and installed, rc.subr requires one change:

--- /etc/rc.subr~ 2011-04-23 06:02:34.000000000 +0000
+++ /etc/rc.subr 2011-04-23 06:03:01.000000000 +0000
@@ -56,7 +56,7 @@
 _RCCMD_rcs="/usr/bin/rcs"
 _RCCMD_rm="/bin/rm"
 _RCCMD_sh="/bin/sh"
-_RCCMD_su="/usr/bin/su"
+_RCCMD_su="/bin/su"
 _RCCMD_systrace="/bin/systrace"
 _RCCMD_whoami="/usr/bin/whoami"

Starting with init

Using postfix as the example still, install the example init script
into your rc.d path, mine is set to /usr/pkg/etc/rc.d:

cp /usr/pkg/share/examples/rc/postfix /usr/pkg/etc/rc.d

Edit /usr/pkg/etc/rc.d/postfix and add the sysv-rc headers, something
similar to:

BEGIN INIT INFO
Provides: postfix
Required-Start: $local_fs $remote_fs
Required-Stop: $local_fs $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Postfix daemon.
END INIT INFO

Lastly, link the script to /etc/init.d and run update-rc.d:

ln -s /usr/pkg/etc/rc.d/postfix /etc/init.d/postfix
update-rc.d postfix defaults

Now, set up /etc/rc.conf as normal, and postfix should boot.

Footnotes

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/salt-rpm-reinstall.html

 Navigation

 		
 index

 		Ohess »

 Using Salt Stack to upgrade an already install RPM.

Salt - Reinstall Package from RPM

I hit a small issue trying to install a new version of Node.js on our web
servers this week. We had previously installed Node v0.6 from a repo that is now
defunct. We wanted to upgrade our web cluster to v0.8 through salt, but ran into
problems trying to purge the old package. So, here is a shortcut for
reinstalling a new package from RPM:

Node

{% set node_ver = '0.8.18-1' %}

node-pkg:
 pkg.installed:
 - sources:
 - nodejs: salt://node/nodejs-{{ node_ver }}.{{ grains['cpuarch'] }}.rpm
 - watch:
 - module: nodejs-old

nodejs-old:
 cmd.run:
 - name: /bin/true
 - onlyif: "rpm -q nodejs && ! rpm -q nodejs-{{ node_ver }}"
 module.wait:
 - name: pkg.purge
 - pkgs: nodejs
 - watch:
 - cmd: nodejs-old

In this example, cmd.run is only run if nodejs is installed and not the
version we are trying to install. If cmd.run is triggered, it runs
/bin/true, which causes the module.wait watch to trigger, thus purging the
package from the system. The install check is performed last, which installs
Node.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/drafts.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/deploying-perl-fabric-carton.html

 Navigation

 		
 index

 		Ohess »

 An example of deploying Perl applications with Fabric and Carton, with slides from a panel talk at pdx-pm.

Deploying Perl with Fabric and Carton

 Carton, similar to Python’s pip or Node’s npm, allows for module version
locking for more predictable deployments. Using the bundle mode, a local
cache can be used for deployments, or using the standard deployment mode
the carton.lock file will be used to install modules.

Combined with Carton, Fabric can be used to deploy exact copies of module
dependencies to multiple servers, even in parallel. Fabric could also be used to
rsync the local module cache for bundle installs.

Fabric and Carton Glue

Here is a working example of a Carton deployment using Fabric. Using
App::local::lib::helper as the shell in the fabfile, bootstrap cpanminus and
Carton and then deploy the application with Carton.

'''Deployment'''

from fabric.api import *
from fabric.contrib.project import rsync_project
from contextlib import contextmanager

import os.path

env.www_host = 'prod@server'
env.build_path = '/srv/www/site'
env.env_path = '/srv/www/envs/bootstrap'

@task
@hosts(env.www_host)
def bootstrap():
 '''Bootstrap environment'''
 if not exists(env.build_path):
 run('mkdir -p {build_path}'.format(**env))
 if not exists(env.env_path):
 run('mkdir -p {env_path}/{{lib,bin}}'.format(**env))
 with cd(env.env_path):
 env.cpanm = '{env_path}/bin/cpanm'.format(**env)
 if not exists(env.cpanm):
 run('curl -Lko {cpanm} "http://cpanmin.us"'.format(**env))
 run('chmod +x {cpanm}'.format(**env))
 run('{cpanm} -L . App::cpanminus'.format(**env))
 run('{cpanm} -L . App::local::lib::helper'.format(**env))
 run('{cpanm} -nL . carton'.format(**env))

@task
@hosts(env.www_host)
def deploy():
 '''Deploy master'''
 rsync_project(
 env.build_path,
 './',
 exclude=[
 '*.pyc',
 '.git',
 'local/',
]
)
 with localenv():
 with cd(env.build_path):
 run('carton install')

@contextmanager
def localenv():
 '''Context manager for local::lib'''
 with settings(shell='{env_path}/bin/localenv /bin/sh -c'.format(**env)):
 yield

def exists(path):
 '''Same as the contrib.files.exists, only with a different test'''
 with settings(hide('everything'), warn_only=True):
 return not run('test -e "%s"' % path).failed
</pre>

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

projects.html

 Navigation

 		
 index

 		Ohess »

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

_images/fig13.png
= = =
(i)
o
=
o
. 1]
= = =

pub/zeromq-sockets-perl.html

 Navigation

 		
 index

 		Ohess »

 Using ZeroMQ sockets in your Perl application.

ØMQ Sockets and Perl

ØMQ finally clicked for me while I was building out an API service and service
clients for all of our mail systems. When I started the project, and I was just
beginning to use ØMQ, I had a lot of questions on how to use it best, and what
type of patterns I could use, or should use, when working with these sockets.

While part of deciding on ØMQ was delving into everything it could do, the
larger focus was what it did well. There will always be project-specific
constraints that guide choices, so it’s never possible to say that any
one project is the answer. But, ØMQ was able to provide a very flexible, and
generalized solution – where all I needed was socket communication, it gave me
a better socket.

Why ØMQ?

I originally decided on ØMQ because this project required something more
flexible than a vanilla job queue. It could act like a message queue, but still
provide streaming sockets. It supported multiple languages, and the socket
patterns for building concurrent applications went far beyond what redundancy I
could accomplish with a RESTful API.

ØMQ gave me exactly what I needed: it provided an advanced socket interface with
the features of a message queue. ØMQ takes your typical BSD or POSIX sockets,
and builds on top of them, providing one that caches, queues messages, and is
connection-aware. All this boilerplate is abstracted with ØMQ, including load
balancing and pub/sub patterns for concurrency. It gives you a socket that is
minimalist as much it is powerful.

There is much more to ØMQ than I could describe here. For anyone looking to
create sockets with ØMQ, the guide [http://zguide.zeromq.org/page:all] is an excellent, thorough
resource. If you are deciding if ØMQ is a fit for your application, here are
some more specific parts of the guide you should look at:

		Multipart messages [http://zguide.zeromq.org/page:all#Multipart-Messages] - Multipart message is an important concept for ØMQ
handle large messages very well, at the cost of latency. It would be a bad fit
for any sockets where latency was a sizable concern.

		Using push/pull sockets [http://zguide.zeromq.org/page:all#Divide-and-Conquer] - The push/pull socket pair provides streaming
sockets, useful when sending data one-way.

		Handling multiple sockets [http://zguide.zeromq.org/page:all#Handling-Multiple-Sockets] - Polling sockets in ØMQ is similar to using the
select function, which can’t be used on a ZMQ::Socket.

		Request/reply mechanisms [http://zguide.zeromq.org/page:all#The-Request-Reply-Mechanisms] - ØMQ routes messages by adding frames through
router and dealer socket types.

ØMQ and Perl

For starters, the best distribution to use when working in Perl is ZMQ, not
the now defunct ZeroMQ or AnyEvent::ZeroMQ. Both version 2 and 3 of ØMQ
developments headers can be used, through the package ZMQ::LibZMQ2 and
ZMQ::LibZMQ3, respectively. The ØMQ development packages must be installed on
your system for these packages to work – most modern distributions still use
version 2. ZMQ::LibZMQ* exposes the functions that nearly resemble the ØMQ C
functions, with some changes for type checking. The full library is exposed,
which is good, but it’s exposed as a Perl-ish C interface, but that’s fine.

This bit might be necessary, when ZMQ defaults to version 3, this forces
version 2. This will use version 2, which you’ll find in most Linux distros
still.

BEGIN {
 $ENV{ PERL_ZMQ_BACKEND } = 'ZMQ::LibZMQ2';
}

Here is what a full example would look like. There is a sender piece and a
listener piece operating in a request/reply pattern. This is what an API
implementation would look like to start – the sending socket sends a message
and waits for a response.

		Listening side [https://github.com/imatix/zguide/blob/master/examples/Perl/hwserver.pl]

		Client side [https://github.com/imatix/zguide/blob/master/examples/Perl/hwclient.pl]

ØMQ Usage and Patterns

Because sent messages are only strings, serialization of the packets must happen
on send and receive. Working between Python and Perl, the Python package zmq
includes a wrapper for JSON serialization, which can also be done in Perl’s
ZMQ.

use ZMQ;
use ZMQ::Constants qw/ZMQ_REQ/;
use ZMQ::Serializer;

ZMQ::Serializer::register_read_type(json => \&JSON::decode_json);
ZMQ::Serializer::register_write_type(json => \&JSON::encode_json);

my $ctx = ZMQ::Context->new(8);
my $socket = $ctx->socket(ZMQ_REQ);
$socket->connect("tcp://localhost:8888");

$socket->sendmsg_as(json => {
 command => 'do_foobar',
 foobar => 'foobar',
 something => JSON::true
});

This is a slightly naive approach, assuming everything coming over the wire is
valid JSON. The registered handlers for the serializer could also wrap the
message decoding in an eval or try block at very least.

Socket reliability [http://zguide.zeromq.org/page:all#Designing-Reliability] is an important piece that isn’t built into
the sockets. While waiting for messages to arrive, especially waiting for a push
or pull stream to end or hang up, the socket should be polled for new messages,
instead of blocking on the receiving socket. Blocking here would tie up the
receiving end, hanging indefinitely should the sending side break transmission
or crash.

my $tries = 5;
while (1) {
 my $poller = zmq_poll([
 {
 socket => $socket->{_socket},
 events => ZMQ_POLLIN,
 callback => sub {
 my $data = $socket->recvmsg_as('json');
 print $data->{foobar};
 }
 }
], (5000000));

 if ($poller == 0) {
 last
 if ($tries-- == 0);

 # Disconnect, reconnect
 $socket->setsockopt(ZMQ_LINGER, 0);
 $socket->close();
 $socket = $ctx->socket(ZMQ_PULL);
 $socket->connect($host);
 }
}

The zmq_poll function takes an array of socket configurations to poll on and
a timeout in microseconds. Individual sockets are configured with either a file
descriptor – using fd instead of socket in the hash – or a socket and
a callback. The socket part here is pointing to $socket->{_socket} because
zmq_poll expects a ZMQ::LibZMQ2::Socket instance, not ZMQ::Socket.

Also important is the disconnect and reconnect code. On a timeout, zmq_poll
will return 0, signaling either a chance to hangup and quit, or reconnect. The
beauty of ØMQ here is that if a network event caused a timeout, the sending side
has simply queued up messages. On a reconnect the receiving side will start pulling
those messages again, the socket context instance – $ctx – hasn’t changed.

The hangup bit is important here. Setting the ZMQ_LINGER option to 0 seconds
is required to disregard any pending connections or sends and allow the socket’s
context instance to be destroyed [http://zguide.zeromq.org/page:all#Making-a-Clean-Exit]. If not, the underlying call to
zmq_ctx_destroy will wait here forever when cleaning up or going out of scope.

 When building an application that will scale out, it’s important to scale ahead
of time. An important consideration here is service discovery [http://zguide.zeromq.org/page:all#Service-Discovery]. An example of
what wouldn’t scale easily is a star topology – subscribers simply given a
common publisher socket to connect to. This doesn’t scale beacuse it doesn’t
allow for multiple publishers.

To simplify service discovery [http://zguide.zeromq.org/page:all#Service-Discovery], a broker should be used early on in your
application development. In the case of a pub/sub pattern, instead of using
bound publisher sockets, both publishers and subscribers would connect to the
broker, which is bound and listening for both connections. The broker [http://zguide.zeromq.org/page:all#-MQ-s-Built-In-Proxy-Function] would
act as a simple switch in this case.

[image: ../_images/fig13.png]

use ZMQ::LibZMQ2;
use ZMQ::Constants qw(ZMQ_DEALER ZMQ_ROUTER ZMQ_QUEUE);

my $context = zmq_init();

Socket facing clients
my $frontend = zmq_socket($context, ZMQ_ROUTER);
zmq_bind($frontend, 'tcp://*:5559');

Socket facing services
my $backend = zmq_socket($context, ZMQ_DEALER);
zmq_bind($backend, 'tcp://*:5560');

Routing device connecting both sockets
zmq_device(ZMQ_QUEUE, $frontend, $backend);

Hopefully this all offers some direction. ØMQ has worked beautifully in our
project, but I would definitely suggest reading through the guide and looking at
a few projects that use ØMQ to see if it would be the best fit for your project.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

about.html

 Navigation

 		
 index

 		Ohess »

About

Anthony Johnson, @agjhnsn [https://twitter.com/agjhnsn]

Cofounder of Read the Docs, Inc. [https://readthedocs.com],
residing in Portland, Oregon.
I like to climb things.

Github [http://github.com/agjohnson] - CPAN [http://search.cpan.org/~agj] - Google+ [https://plus.google.com/u/0/115639307562817258721] - Bitbucket [http://bitbucket.org/agj]

I help organize PDX.pm [http://pdx.pm.org] montly meetings.
Feel free to email me,
or catch me in the #pdx.pm channel on irc.perl.org,
if you would like to schedule a talk.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/plack-anyevent-redis-and-sockjs.html

 Navigation

 		
 index

 		Ohess »

 Background information on websockets and an example walkthrough building an
evented web application with websockets

Plack, AnyEvent, Redis, and SockJS

I thought I would share some of what I’ve been doing with SockJS and Redis in
Perl lately. This is an example application and some background information on
websockets that will be part of a talk on AnyEvent and Plack/Twiggy at
PDX.pm [http://pdx.pm.org] this week.

WebSockets

A websocket is a bi-directional socket connecting a client and the server. It
allows for communication similar to comet or ajax, without polling overhead.
A couple websocket wrapper implementations have popped up in the Node.js
community: Socket.IO [http://socket.io] and SockJS [http://github.com/sockjs/sockjs-client].

Both implementations use alternative transports [https://github.com/sockjs/sockjs-client#supported-transports-by-browser-html-served-from-http-or-https] to create a cross-browser
websocket, or websocket-like, connection. Cross-browser support makes use of a
proper WebSocket protocol initially, and failing that, backs down to a
supported transport [https://github.com/sockjs/sockjs-client#supported-transports-by-name].

SockJS vs Socket.IO

SockJS [http://github.com/sockjs/sockjs-client] was a project started to address bloat in Socket.IO [http://socket.io]. In the
relative past, SockJS has appeared to be a more consistent project, and has had
more active development. In response to a competing project, Socket.IO [http://socket.io] was
trimmed down to reduce bloat and given a different name: Engine.IO [https://github.com/LearnBoost/engine.io].

WebSocket Server

These websocket implementations require a server-side component to run. The Node
SocketIO module is the server module that also distributes the client side
module, and SockJS is broken into a server module and client side javascript.

WebSockets in Perl

We can use them in Perl!

		Perl’s SockJS [https://github.com/vti/sockjs-perl] is the SockJS server to compliment the javascript SockJS
client

		PocketIO [https://github.com/vti/pocketio.git] is the Perl Socket.IO server

But, it’s not, not painful.

Problems

		Make sure to turn chunking off on the SockJS instance, otherwise:

4f
{"origins":["*:*"],"entropy":3165083279,"websocket":true,"cookie_needed":false}
0

Will be your output on the websocket. This is chunked return from Twiggy, which
is returned because Twiggy returns via HTTP1.1 by default.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

search.html

 Navigation

 		
 index

 		Ohess »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/perl.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub.html

 Navigation

 		
 index

 		Ohess »

 Publications

 2014

 ØMQ Sockets and Perl

Using ZeroMQ sockets in your Perl application.

 2013

 Responsive Email Content

How to add responsive email content into your responsive email design.

 Plack, AnyEvent, Redis, and SockJS

Background information on websockets and an example walkthrough building an
evented web application with websockets

 Salt - Reinstall Package from RPM

Using Salt Stack to upgrade an already install RPM.

 2012

 Deploying Perl with Fabric and Carton

An example of deploying Perl applications with Fabric and Carton, with slides from a panel talk at pdx-pm.

 On the State of High Availability

An example of the troubles setting up open source high availability clusters

 Using pkgsrc on Debian Squeeze

Directions for setting up pkgsrc on Debian Squeeze

 Using pkgsrc on Centos 5.5

Directions for setting up pkgsrc on Centos 5.5

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/pkgsrc.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/on-the-state-of-high-availability.html

 Navigation

 		
 index

 		Ohess »

 An example of the troubles setting up open source high availability clusters

On the State of High Availability

Demand for viable open source solutions for high availability seems to be on the
decline – or at least the supply seems to be withering away. I can only
speculate why this may be the case. Maybe the requirement for clustering pushes
projects to evaluate enterprise solutions, or maybe the demand truely isn’t
there.

I recently noticed this all while setting up a fairly simple configuration – I
was setting up two boxes to act as SPoF, active-passive gateways. These boxes
were going to run FreeBSD and pf for NAT and routing, and I would use CARP or
Linux-HA for host failover.

So, my first attempt, FreeBSD 8.2 on both boxes. CARP requires a kernel
re-compile. Not above my comfort zone, but in the interest of future
maintainability, I opted for FreeBSD 9.0.

FreeBSD 9.0 and CARP didn’t work because of the missing carpdev feature that
hasn’t been ported from OpenBSD yet. I required the carpdev feature because
the gateway is only allocated 1 public IP, and CARP without carpdev requires
3 addresses per failover address – one IP per physical interface, and the
failover address as an alias.

NetBSD does have carpdev, but requires a kernel rebuild. I went ahead
anyways, and while the kernel rebuild was clean, ifconfig segfaulted – even
after a recompile of ifconfig and netstat.

Back to FreeBSD 9.0, this time without CARP. Alternatives? Freevrrpd: dead.
Linux-HA: not fully ported over. So, I tried Linux-HA, specifically heartbeat.
All went okay when each interface was brought up with an IP address, but again,
this was a problem. My final test was using heartbeat on a down interface, with
a heartbeat network on a third interface between the nodes. The failover was
okay, but heartbeat refuses to create an interface with anything but a /32
subnet. This shouldn’t be the case, so something feels off.

So, now I am left with only a few options.

Ditch everything and switch to Linux with iptables. Can’t use LVS, it’s
dead. I’m stuck with Linux-HA and heartbeat, not to mention iptables – but
maybe that’s a slight idelogical stance.

Hack up FreeBSD and heartbeat to get the interface up correctly. Some simple
troubleshooting may resolve this issue.

Use FreeBSD and keepalived. This is not fully ported from Linux though.

Switch to OpenBSD, so I can use both pf and carpdev. However, I feel
OpenBSD, as well as NetBSD, would not be as maintainable for my employer – a
Linux only shop.

I’m also considering a custom solution may very well be faster at this point.

As I ran into more and more dead-ends, I began switching gears a lot quicker,
spending less time troubleshooting each iteration. I believe there are
work-arounds for these issues, but my point is not that these projects are
flawed, but that the overall pool of solutions is so thin and seemingly
outdated.

If I can find myself with some time and a good enough solution, I may try to
find my own solution to this problem eventually.

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/design.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/email.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/ha.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/linux.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/freebsd.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/responsive.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/rpm.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/centos.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/anyevent.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/websockets.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/redhat.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/salt.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/author/anthony.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/admin.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

pub/tag/mq.html

 Navigation

 		
 index

 		Ohess »

 Publications

 © Copyright 2014, Anthony Johnson.
 Created using Sphinx 1.2.3.

_static/down.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/up.png

